Point/Counterpoint:
My Ideal Ablation Pattern for Combined CXL Treatments

Surgeons share their preferred methods to combine laser and CXL.

By A. John Kanellopoulos, MD; and Leopoldo SpadA, MD

The Athens Protocol:
Topography-Guided Partial PRK With CXL

An effective way to stabilize and visually rehabilitate patients with keratoconus and post-LASIK ectasia.

By A. John Kanellopoulos, MD

Our investigative team at the Laser Vision Eye Institute has studied the clinical application of corneal collagen crosslinking (CXL) in patients with keratoconus and post-LASIK ectasia for more than 10 years and in more than 2,000 eyes.1-29 We introduced the use of CXL through a femtosecond laser-created intrastromal corneal pocket,3,6 the use of higher-fluence CXL,3,5,12,14,15,21,26 and the use of CXL prophylactically in myopic LASIK and as an efficacy booster in hyperopic LASIK.14,21 Most recently, we introduced the use of high-fluence CXL in femtosecond laser-assisted astigmatic keratotomy procedures in order to enhance the effect and/or reduce the incision arc.30

Our biggest contribution to the global ophthalmic community, however, may be the introduction of topography-guided normalizing surface ablation plus CXL as a visual rehabilitation tool.2 The concept of ablating a thin, ectatic cornea usually generates fear in surgeons and patients alike. Nevertheless, we have found that the apparent disadvantage of thinning the cornea is accompanied by remarkable vision-rehabilitating improvement and synergy from the CXL component.

We initially performed topography-guided partial PRK in patients who showed stabilization after CXL but had poor visual rehabilitation due to remaining significant corneal irregularity. Soon, however, we began to perform both treatments on the same day, with topography-guided PRK applied first, followed immediately by high-fluence CXL. With 1 to 3 years of follow-up in many cases, the BCVA gains achieved by most patients were impressive. Hundreds of cases followed, and we reported the results and complications in large groups of patients treated with this protocol for keratoconus and post-LASIK ectasia.26 Several esteemed colleagues have also presented similar approaches of combined PRK and CXL.

Our findings suggest that simultaneous topography-guided partial PRK with CXL offers a safe and effective approach for normalizing the cornea and enhancing visual function in
eyes with ectatic conditions. The core importance of CXL in this technique is to address highly irregular astigmatism in eyes with keratoconus and post-LASIK ectasia. Our theoretical and clinical evidence supports the use of this technique, dubbed the Athens Protocol, in which CXL and topography-guided surface ablation are performed in the same session rather than sequentially (Figure 1).

In our experience, surface ablation using a topography-guided excimer laser platform (Allegretto Wave 200-Hz and 400-Hz models and recently the WaveLight EX500; all by Alcon Laboratories, Inc.) effectively and predictably normalizes the corneal surface and improves functional vision. We have documented a synergistic effect when this procedure is performed simultaneously with CXL. Safety with this combination approach has been favorable as well. The minor complications of postoperative haze and delayed epithelial healing have occurred in a small number of eyes in our large series.26

MEETING VISUAL REHABILITATION NEEDS

Although the efficacy of CXL for stabilizing keratectasia is well established and the procedure causes some corneal flattening, significant residual astigmatism that limits effective soft contact lens or spectacle wear may be a persistent problem for patients who are unable to wear rigid gas-permeable contact lenses. This situation creates an indication to perform subsequent topography-guided partial PRK or to implant intrastromal corneal ring segments (ICRSs). The latter option is used by some colleagues, but in our hands has very variable efficacy and may be counterintuitive, as the main mechanism of action of the ICRS relies on high elasticity of the cornea. The stiffening effect of CXL may make these eyes poor responders to subsequent ICRS implantation.

Surface ablation of a keratoconic eye may sound unorthodox, but the goal of using topography-guided software is to normalize the corneal surface and improve BCVA. This is a therapeutic procedure in our opinion, not a refractive one; in fact, some eyes become more myopic postoperatively but have significantly better corneal regularity and improvement in BCVA. We have chosen to remove no more than 50 μm of stroma, which at most usually treats 2.00 to 2.50 D of astigmatism and up to 1.00 D of myopia.

The pivotal element in this technique is the proprietary topography-guided platform of WaveLight that utilizes Placido disc images and/or Pentacam (Oculus Optikgeräte GmbH) tomographic maps to calculate a treatment consisting of combined myopic and hyperopic subsegments to normalize the irregular corneal surface. We are currently reviewing long-term results of a very large case series (more than 500 cases) to determine which modality is more effective, and the preliminary data suggest the Pentacam-driven platform. Experience has taught us that visual function in these cases correlates closely with two main topometric corneal indices, the index of high decentration (IHD) and the index of surface variance (ISV). The aim of these treatments is improve these two indices of ectasia-related topometric irregularity (Figure 2).
ATHENS PROTOCOL

The Athens Protocol begins with a 6.5-mm phototherapeutic keratectomy (PTK) to remove 50 μm of epithelium. Then topography-guided partial PRK is performed. The topography reference image for this application is generated by the Oculyzer II (a Pentacam HR-based tomographic capture device; Alcon Laboratories, Inc.). The excimer laser ablation resembles part of a hyperopic treatment combined with part of an eccentric myopic treatment over the cone. It is performed using a 5.5-mm effective optical zone and targets steepening of the area adjacent to the cone in an attempt to regularize the corneal surface.

Mitomycin C (0.002 mg/mL) is applied for 30 seconds, followed by our version of the CXL procedure. Ultraviolet-A (UV-A) light is applied at 5 mW fluence for 18 minutes with our own riboflavin solution formulated with 0.1% sodium phosphate, slightly hypotonic (prepared in the United States by Leiter’s Pharmacy). This part of our technique was designed with CXL expert Satish Herekar, MS, a science fellow with Avedro. For a video of the surgical technique, visit youtube.com/watch?v=ZrOrFlkL88Q&list=UUUSFLzt_qEu0wTKlnqhwLpmg&index=30&feature=plcp.

The corneal epithelium and Bowman membrane can act as barriers to UV-A light penetration into the stroma. Because these tissues are removed in the PTK and/or PRK procedure, it seems intuitive that the efficacy of CXL would increase; our clinical findings support this theory. For example, in a patient who had CXL alone in one eye and the Athens Protocol in the other, OCT hyperreflectivity maps show that the area of crosslinking is much broader and denser in the eye that received the combination treatment (Figures 3 and 4). We recently described these OCT maps as a sign of the extent of CXL.

We also theorized that a PRK-treated eye represents a better biomechanical model for performing CXL (Figure 5). In theory, an eye with a regularized surface, as opposed to one in which there is ongoing strain from intraocular pressure and eye rubbing localized over the cone peak, would be better strengthened by CXL and more likely to remain stable after the procedure.

We believe redistribution of corneal strain by remodeling of the cornea with surface ablation is a significant factor in the synergistic effect achieved when performing PRK and CXL together. The order of treatment in the Athens Protocol also avoids removing crosslinked cornea, as would occur if CXL were performed first followed by PRK.

CLINICAL DATA

In a comparison of two large, consecutive series of eyes treated either with PRK and CXL at the same session or with CXL first followed by topography-guided surface ablation 1 year later, statistically significant differences in several outcome parameters favored the same-day proce-
dure. The study included 127 eyes in the sequential group and 198 eyes treated with the Athens Protocol. In the sequential group, mean logMAR UCVA improved from 0.90 to 0.49, and mean logMAR BCVA improved from 0.41 to 0.16. Mean keratometry (K) reading decreased by 2.75 D, and mean manifest refraction spherical equivalent (MRSE) by 2.50 D. The mean postoperative hazy score was 1.2. For eyes in the simultaneous group, there was a significantly greater improvement in mean logMAR UCVA (from 0.96 to 0.30) and mean logMAR BCVA (from 0.39 to 0.11), as well as a significantly greater mean reduction in MRSE (-3.20 D) and keratometry (-3.50 D). The mean hazy score in the simultaneous group was 0.5, which was significantly lower than the control group score. Central corneal thickness decreased by 70 μm after both procedures, and there was no significant change in endothelial cell count in either group. These findings show that performing the two procedures in the same session offers the advantages of less PRK-associated scarring and better riboflavin and UV-A penetration to achieve a wider and deeper CXL effect with greater corneal flattening.

ATHENS PROTOCOL VS ICRS

Sherif Baddar, MD, of Cairo, Egypt, is conducting an interesting study as a postdoctoral thesis, evaluating the outcomes of patients with keratoconus who are treated with the Athens Protocol in one eye and ICRS implantation (Ferrara Rings, Ferrara Ophthalmics) and CXL in the fellow eye. Preliminary results show improvements in both groups, although BCVA and the index of height decentration improvement appear to be significantly better in the Athens Protocol group (Figures 6 and 7).

CONCLUSION

In our experience, same-day, simultaneous topography-guided PRK and CXL is a safe and effective therapeutic intervention in highly irregular corneas with keratoconus and progressive post-LASIK ectasia. The Athens Protocol appears to be superior to sequential CXL and PRK.

A. John Kanellopoulos, MD, is the Director of the LaserVision.gr Eye Institute in Athens, Greece, and is a Clinical Professor of Ophthalmology at New York University School of Medicine. He is also an Associate Chief Medical Editor of CRST Europe. Dr. Kanellopoulos states that he is a consultant to Alcon/WaveLight and Avedro, Inc. He may be reached at tel: +30 21 07 47 27 77; e-mail: ajkmd@mac.com.
refractive regression, and corneal haze are commonly seen, limiting the use of noncustomized PRK in these eyes.\textsuperscript{1} Excimer laser customized ablation shows promise to be a powerful technique to treat such corneal irregularities.

Corneal ectasia after lamellar keratoplasty has occasionally been reported, but its incidence has not been assessed. Corneal collagen crosslinking (CXL) induced by application of riboflavin and ultraviolet-A (UV-A) light has been shown to increase the biomechanical stability of corneas with lamellar flaps, arresting and even partially reversing iatrogenic keratectasia after LASIK.\textsuperscript{2}

Keratoconus is a degenerative disorder in which the cornea thins and steepens, affecting vision. For many years, full-thickness keratoplasty was the principal surgical treatment for patients with advanced keratoconus, but, more recently, lamellar corneal approaches have been advocated as less invasive surgical alternatives. One of these, excimer-laser–assisted lamellar keratoplasty (ELLK), has been proposed to augment thin corneas in keratoconus and keratectasia after LASIK.\textsuperscript{3}

Some time ago, we saw one patient who developed corneal ectasia after ELLK for keratoconus and a secondary PRK for residual refractive correction.\textsuperscript{4} In this 33-year-old woman, CXL resulted in improvement of visual acuity and preservation of a clear lamellar graft with 2 years’ follow-up.

To further assess this therapeutic combination of CXL and PRK as a prophylaxis against ectasia after lamellar keratoplasty, we conducted a larger study.\textsuperscript{5} This study evaluated the efficacy, predictability, safety, and stability of the combined treatment of customized excimer laser PRK and prophylactic CXL for residual refractive error in 14 patients previously treated with ELLK for keratoconus (Figure 8). The aim was for customized PRK to regularize the central cornea and CXL to strengthen and stabilize the cornea in these eyes.
The combination of CXL and toric phakic IOL implantation may be used to correct myopic astigmatism in patients with progressive mild to moderate keratoconus. A 21-year-old man presented with keratoconus. The referring ophthalmologist reported that the patient’s refraction and topography had been progressively changing during the past 3 years. CXL was performed in both eyes with application of riboflavin solution and ultraviolet-A light. Three months later, a Toric Artiflex (Ofta BV) foldable iris-supported phakic IOL was implanted in the patient’s ambylopic (high anisometropia) right eye. At 14 months postoperative, in the right eye his UCVA was 0.6 and BCVA was 0.6 with a refraction of plano -0.25 X 30 and 0.6 with a rigid gas-permeable contact lens (RGPCL) overrefraction. In the left eye, UCVA was 0.8 and BCVA was 0.9+ with refraction +0.50 -1.00 X 105 and 1.00 with RGPCL.

In this case, CXL stabilized the patient’s keratoconus, while the toric IOL corrected his ametropia. If the degree of irregular astigmatism is clinically nonsignificant, the ametropia is high, and the patient desires spectacle independence, the implantation of a phakic IOL (in the absence of standard contraindications) might be considered an option for patients with early keratoconus. If the degree of irregular astigmatism is clinically significant, we could have considered the implantation of intraconal ring segments.

Jose L. Güell, MD, PhD, is Director of the Cornea and Refractive Surgery Unit of the Instituto de Microcirugía Ocular, Barcelona, Spain, and an Associate Professor of Ophthalmology at the Universitat Autonoma de Barcelona. Dr. Güell may be reached at tel: +34 93 253 15 99; fax: +34 93 417 13 01; e-mail: guell@imo.es.